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This note only covers Sections 4.1-4.2 and it focuses on the definition of limit of a function
and some basic limit theorems. There are many more results and problems you should be familiar
with. If necessary, I will select some of them and discuss more specific examples next week, when
you have learned one-sided limits, infinite limits, limits at infinity and two important limits.

Part I: Problems

1. Let A ⊂ R and f : A→ R. Suppose c is a cluster point of A.

(a) Prove the Sequential Criterion for limit: lim
x→c

f(x) = L ∈ R if and only if for every

sequence in A \ {c} converging to c, the sequence (f(xn)) converges to L.

(b) Suppose lim
x→c

f(x) does not exist. Show that there exists ε0 > 0 and two sequences

(xn), (yn) in A \ {c}, both converging to c, such that |f(xn)− f(yn)| ≥ ε0 for all n ∈ N.

(c) Prove the Cauchy Criterion for limit: lim
x→c

f(x) exists if and only if for all ε > 0,

there exists δ > 0 such that whenever x, y ∈ A with 0 <|x − c|, |y − c| < δ, we have
|f(x)− f(y)| < ε.

Proof: (a) Please refer to Theorem 4.1.8 in the text.

(b) From the Divergence Criteria, f(x) does not have a limit at c if and only if there exists
a sequence in A \ {c} such that lim zn = c while the sequence (f(zn)) does not converge.
Then by Cauchy Criterion for sequence, ∃ ε0 > 0 and two subsequences (xn), (yn) of (zn)
such that lim xn = lim yn = c and

|f(xn)− f(yn)| ≥ ε0, ∀n ∈ N.

(c) “=⇒”: easy to prove.

“⇐=”: this is an immediate consequence of (b).

If otherwise lim
x→c

f(x) does not exist, then by (b) we have that there exists ε0 > 0 and two

sequences (xn), (yn) in A \ {c}, both converging to c, such that |f(xn)− f(yn)| ≥ ε0 for all
n ∈ N.

Now for this ε0, there exists δ > 0 such that whenever x, y ∈ A with 0 < |x− c|, |y − c| < δ,
we have |f(x)− f(y)| < ε.

However, since limxn = lim yn = c, there exists N ∈ N such that

0 < |xn − c| < δ, 0 < |yn − c| < δ

whenever n ≥ N (xn, yn 6= c from our construction). Then from above we know |f(xn) −
f(yn)| < ε0, which is a contradiction.
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2. (Ex 4.1.15) Let f : R→ R be defined by

f(x) =

{
x if x ∈ Q
0 if x ∈ R \Q

(a) Show that f has a limit at x = 0.

(b) Show that f does not have a limit at any c 6= 0.

Proof: (a) Notice that

|f(x)| =

{
|x| if x ∈ Q
0 if x ∈ R \Q

which implies |f(x)− 0| ≤ |x|,∀x ∈ R.

Therefore, ∀ε > 0, we choose δ(ε) = ε and then whenever 0 < |x− 0| < δ = ε, it follows that

|f(x)− 0| ≤ |x| < ε.

This is right the definition for lim
x→0

f(x) = 0.

(b) When c 6= 0, (recall what we have learned in Chapter 2) we can find two sequences
(xn) ⊂ Q, (yn) ⊂ R \Q such that lim xn = lim yn = c. Then

lim f(xn) = limxn = c while lim yn = lim 0 = 0.

From the Divergence Criteria, lim
x→c

f(x) does not exist.

Remark: Compare this example with the Dirichlet function:

f(x) =

{
1 if x ∈ Q
0 if x ∈ R \Q

.

3. The definition of Riemann function (or Thomae’s function) R(x) is

R(x) =


1

q
if x =

p

q
∈ Q where p, q ∈ Z, q > 0 and gcd(p, q) = 1,

0 if x ∈ R \Q
.

Show that lim
x→c

R(x) = 0, ∀c ∈ R. Notice that R(0) = 1 since we can write 0 =
0

1
.

Proof: WLOG, we only consider c ≥ 0 and it suffices to prove that ∀ε > 0, there exists
δ(ε) > 0 such that whenever 0 < |x− c| < δ, we have

|R(x)− 0| = R(x) < ε.

First we set δ1 = 1 and consider all the real numbers x with 0 < |x− c| < δ1 = 1.

If c is irrational, then R(c) = 0 < ε.

If c =
p

q
is rational, then R(c) =

1

q
. Notice that R(c) ≥ ε ⇒ q ≤ 1

ε
⇒ q ∈ S :={

1, 2, · · · ,
[

1

ε

]}
. So we pick out all the rational numbers

p

q
in (c− 1, c+ 1) \ {c} with q ∈ S
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and denote them by x1, x2, · · · , xk (think about why the number of such rational
numbers is finite). If we put

δ = min{δ1, |x1 − c|, |x2 − c|, · · · , |xk − c|},

then whenever 0 < |x− c| < δ we have R(x) < ε.

Therefore, lim
x→c

R(x) = 0.

4. (Composite function). Suppose f, g : R→ R and x0, y0, L ∈ R. If

(a) lim
x→x0

g(x) = y0 and lim
y→y0

f(y) = L;

(b) there exists δ > 0 such that g(x) 6= y0 whenever 0 <|x− x0| < δ,

show that lim
x→x0

f(g(x)) = L. Can we drop the condition (b)?

Solution: From (a), ∀ε > 0, there exists γ(ε) > 0 such that whenever 0 < |y − y0| < γ we
have

|f(y)− L| < ε.

For this γ(ε), there exists δ1 > 0 such that whenever 0 < |x− x0| < δ1 we have

|g(x)− y0| < γ.

Now we rewrite (b) as that δ replaced by δ2 and take δ = min{δ1, δ2}. Then whenever
0 < |x− x0| < δ(≤ δ1, δ2) we have

g(x) 6= y0 and |g(x)− y0| < γ =⇒ |f(g(x))− L| < ε.

Therefore, lim
x→x0

f(g(x)) = L.

Without the condition (b), consider g(x) ≡ 0, f(y) =

{
1, y = 0

0, y 6= 0
and x0 = 0. Then

y0 = lim
x→0

g(x) = 0, L = lim
y→0

f(y) = 0.

However, f(g(x)) ≡ 1 and thus lim
x→0

f(g(x)) = 1 6= L.

Think about which step fails to be true in our proof if condition (b) is dropped.

Remark: For more examples, please refer to Question 5 in Part III and Ex 4.2.13 in
the textbook. Notice that there is a typo in the text:

lim
x→1

g(f(x)) and g
(

lim
x→1

f(x)
)

should be changed to lim
x→0

g(f(x)) and g
(

lim
x→0

f(x)
)

respectively.

Part II: Some comments.

In this chapter we begin the study of functions of one real variable. It is a necessary preparation
for Chapter 5 and these two chapters are definitely the most important ones in this course. You
need to be familiar with the material of this chapter, especially Section 4.1 and 4.2.
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1. Cluster point (limit point, accumulation point)

• A cluster point of a set of A of real numbers is a real number c that can be “approxi-
mated” by points of R in the sense that every neighborhood of c also contains a point
of R other than c itself. Notice that a cluster of a set A does itself not have to
be an element of A, as will be seen from the example below.

• Theorem 4.1.2 A number c ∈ R is a cluster point of A if and only if there exists a
sequence (an) in A such that lim an = c and an 6= c for all n ∈ N.

Example: Consider the set A =

{
1,

1

2
,
1

3
,
1

4
, · · ·

}
, then each element of A is an isolated point

and 0 is a cluster point of A (but not contained in A). Please refer to Example 4.1.3 to
see more examples.

2. Definition of the limit

You should realize the connection between Section 3.1 and 4.1. Here δ(ε) plays the same role
as K(ε) did in Section 3.1. Please notice that when discussing the limit of a function f(x) at
a cluster point c ∈ R, we do not care the value of f(x) at c and we only consider the
behavior of f(x) as x approaches c. In fact, it is even allowed that f(x) is not defined
at c.

Please refer to Example 4.1.7 and learn how to prove that lim
x→c

f(x) = L by definition for

given f(x), c, L. Pay special attention to the way that we determine δ(ε).

3. Sequential criterion (Theorem 4.1.8) is especially important. It is the bridge between
limit of a sequence and limit of a function. The ε−δ definition of the limit is used to establish
a limit, while sequences are more often used to evaluate a limit or prove that a limit fails to
exist.

4. Divergence Criteria

To prove that a certain number L is not the limit of a function f(x) at a cluster point c,
we can find a sequence (xn) converging to c while (f(xn)) does not converge to L.

To prove that the function f(x) does not have a limit at c, we can either find a se-
quence (xn) converging to c such that (f(xn)) is unbounded or find two sequences (xn), (yn),
both converging to c while (f(xn)), (f(yn)) converge to different real numbers (these are two
different cases of a divergent sequence).

5. Limit Theorems (boundedness, multiplication by a constant, addition, subtrac-
tion, product, quotient, order-preservation, squeeze, square root) in Section 4.2 are
similar to those in Section 3.2. While the proofs should be read carefully, our main interest
is the application of these theorems to calculation of limits. You should complete the
proof to Theorem 4.2.4 yourselves by definition.

More results about Limit Theorems are given in Part III.

6. (Generalization of Theorem 4.2.6) Order-preservation property. Let A ⊂ R, c be a
cluster point of A and f, g : A→ R. If f, g satisfy

(a) f(x) ≤ g(x), ∀x ∈ A, x 6= c;
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(b) lim
x→c

f(x) = a, lim
x→c

g(x) = b.

Then a ≤ b.

Another edition of Order-preservation property (generalization of Theorem 4.2.9).
Let f : A→ R and c is a cluster point of A. Suppose

a < lim
x→c

f(x) = L < b,

then there exists δ > 0 such that

a < f(x) < b, ∀x ∈ A ∩ (c− δ, c+ δ), x 6= c.

Part III: Additional exercises.

1. (Ex 4.1.14) Let c ∈ R and let f : R→ R be such that lim
x→c

(f(x))2 = L.

(a) Show that if L = 0, then lim
x→c

f(x) = 0.

(b) Show by example that if L 6= 0, then f may not have a limit at c.

Remark: This problem together with the next question is analogous to Question
1 in Part I of the tutorial notes on Feb 7.

Proof:

(a) From the assumption, ∀ε > 0, there exists δ > 0 such that whenever 0 < |x− c| < δ we
have

∣∣(f(x))2 − 0
∣∣ < ε2, which is equivalent to |f(x)− 0| < ε.

Therefore, lim
x→c

f(x) = 0.

(b) Consider f(x) = sgn(x) and then lim
x→0

(f(x))2 = 1 while lim
x→0

f(x) does not exist.

2. (Ex 4.2.15) Let A ⊂ R, let f : A → R and let c ∈ R be a cluster of A. In addition,
suppose that f(x) ≥ 0 for all x ∈ A, and let

√
f be the function defined for x ∈ A by(√

f
)

(x) :=
√
f(x). If lim

x→c
f(x) = L exists, prove that lim

x→c

√
f =
√
L.

Proof: This is analogous to Theorem 3.2.10 and it can be proved by Theorem 3.2.10
the Sequential Criterion 4.1.8. The details are omitted.

3. (Absolute value rule)(Ex 4.2.14) Let A ⊂ R, let f : A→ R and let c ∈ R be a cluster of
A. If lim

x→c
f(x) = L exists and if |f | denotes the function for x ∈ A by |f |(x) := |f(x)|, prove

that lim
x→c
|f(x)| = |L|.

Proof: This problem is analogous to Theorem 3.2.9 and the proof is omitted.

4. (Maximum/Minimum value rule) Let A ⊂ R, let f1, f2 : A → R and let c ∈ R be a
cluster of A. If lim

x→c
f1(x) = L1, lim

x→c
f2(x) = L2 exist and if max(f1, f2) denotes the function

for x ∈ A by max(f1, f2)(x) := max(f1(x), f2(x)), prove that lim
x→c

max(f1, f2) = max(L1, L2).

Proof: The conclusion is easily proved by noticing that

max(f1, f2)(x) =
f1(x) + f2(x) + |f1(x)− f2(x)|

2

and using the Absolute value rule.
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5. For the following g, f : R → R and x0, y0 ∈ R, discuss the existence of lim
x→x0

g(x), lim
y→y0

f(y)

and lim
x→x0

f(g(x)) respectively.

• g(x) is the Riemann function, f(y) is the Dirichlet function and x0 = 0, y0 = 0.

• g(x) = x2, f(y) =

{
y if y ≤ 1

y + 1 if y > 1
and x0 = 1, y0 = 1.

• g(x) = sgn(x), f(y) = y(1− y2) and x0 = 0, y0 = 0.

• g(x) is the Dirichlet function, f(y) = y and x0 = 0, y0 = 1.

• Both of g(x), f(y) are the Riemann function and x0 = 0, y0 = 1.

• g(x) =


1

x
if x 6= 0

0 if x = 0
, f(y) = sgn(y) and x0 = 0, y0 = 0.

6. (Class Exercise 5). Use ε− δ definition to show that

lim
x→x0

f

g
(x) =

L

M
,

provided lim
x→x0

f(x) = L and lim
x→x0

g(x) = M 6= 0. Here f and g are defined on (a, x0)∪ (x0, b).

Proof. First from our assumptions, for ε1 =
|M |

2
> 0, there exists δ1 > 0 such that whenever

x ∈ (a, b) and 0 < |x− x0| < δ1 we have

|g(x)−M | < |M |
2

=⇒ 0 <
|M |

2
< |g(x)| < 3|M |

2
(why?)

=⇒ 0 <
2

3|M |
<

1

|g(x)|
<

2

|M |
. (1)

Now for any ε > 0, there exists δ2 > 0 such that whenever x ∈ (a, b) and 0 < |x − x0| < δ2
we have

|f(x)− L| < ε|M |
4

. (2)

And there exists δ3 > 0 such that whenever x ∈ (a, b) and 0 < |x− x0| < δ3 we have

|g(x)−M | < ε|M |2

4(|L|+ 1)
. (3)

Take δ = min(δ1, δ2, δ3) and if x ∈ (a, b) and 0 < |x − x0| < δ2 then all (1),(2),(3) hold and
we have∣∣∣∣f(x)

g(x)
− L

M

∣∣∣∣ =
|Mf(x)− Lg(x)|
|Mg(x)|

=
|M(f(x)− L)− L(g(x)−M)|

|Mg(x)|

≤ |M(f(x)− L)|+ |L(g(x)−M)|
|Mg(x)|

=
|f(x)− L|
|g(x)|

+
|g(x)−M |
|g(x)|

· |L|
|M |

<
ε|M |

4
· 2

|M |
+

ε|M |2

4(|L|+ 1)
· 2

|M |
· |L|
|M |

<
ε

2
+
ε

2
= ε.

Therefore, lim
x→x0

f

g
(x) =

L

M
.


